Selina Concise Mathematics Class 9 ICSE Solutions Trigonometrical Ratios
Selina ICSE Solutions for Class 9 Maths Chapter 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22(A)1. From the following figure, find the values of :
(i) sin A
(ii) cos A
(iii) cot A
(iv) sec C
(v) cosec C
(vi) tan C.
Solution 1:
2.Form the following figure, find the values of :
(i) cos B
(ii) tan C
(iii) sin2B + cos2B
3.From the following figure, find the values of :
(i) cos A (ii) cosec A
(iii) tan2A - sec2A (iv) sin C
(v) sec C (vi) cot2 C -
Solution 3:
4.From the following figure, find the values of :
(i) sin B (ii) tan C
(iii) sec2 B - tan2B (iv) sin2C + cos2C
Solution 4:
5.Given: sin A = , find :
(i) tan A(ii) cos A
Solution 5:
6.From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A
Solution 6:
7.Given: cos A =
Evaluate: (i) (ii)
Solution 7:
8.Given: sec A = , evaluate : sin A -
Solution 8:
9.Given: tan A = , find :
Solution 9:
10.Given: 4 cot A = 3 find;
(i) sin A
(ii) sec A
(iii) cosec2 A - cot2A.
Solution 10:
11.Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
Solution 11:
12.In a right-angled triangle, it is given that A is an acute angle and tan A =.
find the value of :
(i) cos A(ii) sin A(iii)
Solution 12:
13.Given: sin
Find cos + sin in terms of p and q.
Solution 13:
14.If cos A = and sin B = , find the value of : .
Are angles A and B from the same triangle? Explain.
15.If 5 cot = 12, find the value of : Cosec + sec
16.If tan x = , find the value of : 4 sin2x - 3 cos2x + 2
Solution 16:
17.Ifcosec = , find the value of:
(i) 2 - sin2 - cos2
(ii)
Solution 17:
18.If sec A = , find the value of :
Solution 18:
19.If sec A = , find the value of :
20.In the following figure:
AD BC, AC = 26 CD = 10, BC = 42,
DAC = x and B = y.
Find the value of :
(i) cot x
(ii)
(iii)
1.From the following figure, find:
(i) y (ii) sin xo
(iii) (sec xo - tan xo) (sec xo + tan xo)
Solution 1:
2.Use the given figure to find:
(i) sin xo (ii) cos yo
(iii) 3 tan xo - 2 sin yo + 4 cos yo.
Solution 2:
3.In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC. Find:
(i) cos DBC (ii) cot DBA
Solution 3:
4.In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm. find:
(i) tan DBC
(ii) sin DBA
Solution 4:
5.In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ABC.
Solution 5:
6.In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B (ii) tan C
(iii) sin2 B + cos2B (iv) tan C - cot B
Solution 6:
7.In triangle ABC; ABC = 90o, CAB = xo, tan xo = and BC = 15 cm. Find the measures of AB and AC.
Solution 7:
8.Using the measurements given in the following figure:
(i) Find the value of sin and tan.
(ii) Write an expression for AD in terms of
9.In the given figure;
BC = 15 cm and sin B =.
(i) Calculate the measure of AB and AC.
(ii) Now, if tan ADC = 1; calculate the measures of CD and AD.
Also, show that: tan2B -
Solution 9:
10.If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
Solution 10:
11.If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
Solution 11:
12.Given: 4 sin = 3 cos ; find the value of:
(i) sin (ii) cos
(iii) cot2 - cosec2.
(iv) 4 cos2- 3 sin2+ 2
Solution 12:
13.Given : 17 cos = 15;
Find the value of: tan + 2 sec.
Solution 13:
14.Given : 5 cos A - 12 sin A = 0; evaluate :
.
Solution 14:
15.In the given figure; C = 90o and D is mid-point of AC. Find
(i) (ii)
Solution 15:
16.If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
Solution 16:
17.In triangle ABC, B = 90o and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
18.In rhombus ABCD, diagonals AC and BD intersect each other at point O.
If cosine of angle CAB is 0.6 and OB = 8 cm, find the lengths of the the side and the diagonals of the rhombus.
19.In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
(i) cos B (ii) sin C
(iii) tan2 B - sec2 B + 2
Solution 19:
20.In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1. Find the length of AB, AD, AC and DC.
21.Given q tan A = p, find the value of :
.
Solution 21:
22.If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.
Solution 22:
23.In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
Solution 23:
24.If 2 sin x = , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
Solution 24:
25.If sin A = and cos B = , find the value of : .
Solution 25:
26.Use the informations given in the following figure to evaluate:
Solution 26:
27.If sec A = , find: .
Solution 27:
28.If 5 cos = 3, evaluate : .
Solution 28:
29.If cosec A + sin A = 5, find the value of cosec2A + sin2A.
Solution 29:
30.If 5 cos = 6 sin ; evaluate:
(i) tan (ii)
Solution 30: