Selina Concise Mathematics Class 9 ICSE Solutions Trigonometrical Ratios
Selina ICSE Solutions for Class 9 Maths Chapter 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22(A)1. From the following figure, find the values of :
(i) sin A
(ii) cos A
(iii) cot A
(iv) sec C
(v) cosec C
(vi) tan C.
Solution 1:
2.Form the following figure, find the values of :
(i) cos B
(ii) tan C
(iii) sin2B + cos2B
3.From the following figure, find the values of :
(i) cos A (ii) cosec A
(iii) tan2A - sec2A (iv) sin C
(v) sec C (vi) cot2 C - 


Solution 3:
4.From the following figure, find the values of :
(i) sin B (ii) tan C
(iii) sec2 B - tan2B (iv) sin2C + cos2C

Solution 4:
5.Given: sin A =
, find :

(i) tan A(ii) cos A
Solution 5:
6.From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A

Solution 6:
7.Given: cos A = 

Evaluate: (i)
(ii) 


Solution 7:
8.Given: sec A =
, evaluate : sin A - 


Solution 8:
9.Given: tan A =
, find : 


Solution 9:
10.Given: 4 cot A = 3 find;
(i) sin A
(ii) sec A
(iii) cosec2 A - cot2A.
Solution 10:
11.Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
Solution 11:
12.In a right-angled triangle, it is given that A is an acute angle and tan A =
.

find the value of :
(i) cos A(ii) sin A(iii) 

Solution 12:
13.Given: sin 

Find cos
+ sin
in terms of p and q.


Solution 13:
14.If cos A =
and sin B =
, find the value of :
.



Are angles A and B from the same triangle? Explain.
15.If 5 cot
= 12, find the value of : Cosec
+ sec 



16.If tan x =
, find the value of : 4 sin2x - 3 cos2x + 2

Solution 16:
17.Ifcosec
=
, find the value of:


(i) 2 - sin2
- cos2 


(ii) 

Solution 17:
18.If sec A =
, find the value of :


Solution 18:
19.If sec A =
, find the value of :


20.In the following figure:
AD
BC, AC = 26 CD = 10, BC = 42,



Find the value of :
(i) cot x
(ii) 

(iii) 


1.From the following figure, find:
(i) y (ii) sin xo
(iii) (sec xo - tan xo) (sec xo + tan xo)

Solution 1:
2.Use the given figure to find:
(i) sin xo (ii) cos yo
(iii) 3 tan xo - 2 sin yo + 4 cos yo.

Solution 2:
3.In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC. Find:
(i) cos
DBC (ii) cot
DBA



Solution 3:
4.In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm. find:
(i) tan
DBC

(ii) sin
DBA


Solution 4:
5.In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos
ABC.

Solution 5:
6.In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B (ii) tan C
(iii) sin2 B + cos2B (iv) tan C - cot B

Solution 6:
7.In triangle ABC;
ABC = 90o,
CAB = xo, tan xo =
and BC = 15 cm. Find the measures of AB and AC.



Solution 7:
8.Using the measurements given in the following figure:
(i) Find the value of sin
and tan
.


(ii) Write an expression for AD in terms of 


9.In the given figure;
BC = 15 cm and sin B =
.


(i) Calculate the measure of AB and AC.
(ii) Now, if tan
ADC = 1; calculate the measures of CD and AD.

Also, show that: tan2B - 

Solution 9:
10.If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
Solution 10:
11.If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
Solution 11:
12.Given: 4 sin
= 3 cos
; find the value of:


(i) sin
(ii) cos 


(iii) cot2
- cosec2
.


(iv) 4 cos2
- 3 sin2
+ 2


Solution 12:
13.Given : 17 cos
= 15;

Find the value of: tan
+ 2 sec
.


Solution 13:
14.Given : 5 cos A - 12 sin A = 0; evaluate :

Solution 14:
15.In the given figure;
C = 90o and D is mid-point of AC. Find

(i)
(ii) 



Solution 15:
16.If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
Solution 16:
17.In triangle ABC,
B = 90o and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.

18.In rhombus ABCD, diagonals AC and BD intersect each other at point O.
If cosine of angle CAB is 0.6 and OB = 8 cm, find the lengths of the the side and the diagonals of the rhombus.
19.In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
(i) cos B (ii) sin C
(iii) tan2 B - sec2 B + 2
Solution 19:
20.In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1. Find the length of AB, AD, AC and DC.
21.Given q tan A = p, find the value of :

Solution 21:
22.If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.
Solution 22:
23.In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
Solution 23:
24.If 2 sin x =
, evaluate.

(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
Solution 24:
25.If sin A =
and cos B =
, find the value of :
.



Solution 25:
26.Use the informations given in the following figure to evaluate: 


Solution 26:
27.If sec A =
, find:
.


Solution 27:
28.If 5 cos
= 3, evaluate :
.


Solution 28:
29.If cosec A + sin A = 5
, find the value of cosec2A + sin2A.

Solution 29:
30.If 5 cos
= 6 sin
; evaluate:


(i) tan
(ii) 


Solution 30: